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Several plume flows in pure and saline water 
at its density extremum 
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An accurate representation of the motion-causing buoyancy force, in the vicinity of 
the maximum-density condition in water at low temperatures, is determined by 
using a very accurate and quite simple equation of state for both pure and saline water. 
The resulting general laminar boundary-layer flow equations admit similarity solu- 
tions and, in the absence of salinity diffusion, require only one additional new 
dimensionless variable, called R. For flows of constant heat content in an unstratified 
ambient fluid, similarity is found only when the far-field temperature is a t  the tem- 
perature of maximum density. The three flow situations considered here are two 
above a horizontal line heat source and one above a point heat source. The first flow 
is a freely rising plane plume and the second is a wall plume (flow over a vertical, 
adiabatic surface with a horizontal line source imbedded in it). The third flow is the 
freely rising axisymmetric plume. These are the models in laminar theory of many 
processes which arise in cold water. A primary objective here is to calculate the effect 
of using a nonlinear density relation for water, which is much more accurate a t  low 
temperatures than the conventional linear one used in 'classical' analyses. The down- 
stream varhtions of the temperature and velocity fields are found to be very different 
from those for flows where the effect of a density extremum is not included. 

1. Introduction 
A balance, a t  about 4 "C, of the competing density-controlling mechanisms of 

hydrogen bonding and molecular thermal motion result in a density extremum in pure 
water a t  atmospheric pressure. For circumstances in local thermodynamic equilibrium, 
an extremum also occurs in saline water a t  atmospheric pressure, up to a salinity 
level, s, of about 26 parts per thousand (%,), and a t  pressures up to about 300 bars abs. 
in pure water. For non-equilibrium conditions, a density extremum may also be 
found well beyond these limits. 

Much of the natural surface water and some technological transport processes which 
involve low-temperature water occur within these ranges of temperature, salinity and 
pressure. When flows are driven by temperature and salinity gradients around the 
level of a density extremum, maximum density conditions may strongly influence 
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the resulting motion. Moreover, the large Lewis numbers associated with such 
phenomena, coupled with the dependence of density on temperature, salinity and 
pressure and the dependence of the temperature of inversion on both salinity and 
pressure may result in multiple extrema across a given flow region. 

Convective motions in low-temperature pure water have received considerable 
attention in the past. External flows have been considered both experimentally and 
analytically, for spherical, cylindrical and flat surfaces. A minimum in heat transfer 
associated with convective reversal (or inversion) around the density extremum has 
been measured and predicted by several previous investigators as discussed by 
Bendell & Gebhart (1976) and Gebhart & Mollendorf (1978). Bendell tk Gebhart (1976) 
measured the melting rate of vertical ice surfaces in pure water a t  temperatures 
ranging from about 2 "C to 20 "C. The results are converted to a heat-transfer parameter 
and are in very good agreement with the calculations of Gebhart & Mollendorf (1978). 

At first, a general analysis of such flow encounters considerable complications. The 
first part of the conventional Oberbeck-Boussinesq approximation is applicable 
inasmuch as density variation may be neglected in continuity considerations. Diffi- 
culty arises, however, because of the motion-causing buoyancy force g(p, - p ) ,  where 
g is gravity and p(t,  s , p )  is the local density. The local reference density, pr, is usually 
taken to be that which determines the local hydrostatic pressure level plL. The second 
part of the Oberbeck-Boussinesq approximation is the expression of this local density 
difference as a linear function of the differences in the motion-causing driving force, 
( t  - t,) and (s - s,,). Such a formulation was used by Gebhart & Pera (197 1) and Pera & 
Gebhart (1972)) but it is not reasonable when a density extremum condition arises, 
since the volumetric coefficient of thermal expansion, p, may be positive, zero and 
negative within such a flow. The awkwardness of such a conventional approach is 
apparent from the ice-melting results and observations of Bendell & Gebhart (1976). 

Therefore, instead of using the usual Oberbeck-Boussinesq approximation one is 
led to  the direct use of a density relation in the buoyancy force. Past studies have 
encountered considerable problems: either accuracy has been sacrificed fur simplicity 
in analysis or, with more accurate representation, many additional problem-dependent 
parameters have been generated. 

Gebhart & Mollendorf (1977) have recently improved the possibilities for the direct 
use of a simple and accurate buoyancy-force formulation by developing a new density 
equation for both pure and saline water. It has very high accuracy to 20 "C, to a 
salinity, s, of 40%, and to a pressure level, p ,  of 1000 bars abs. It accomplishes this 
with only one temperature term, in an expansion around the temperature of the 
density extremum, tm(s ,p) ,  a t  any particular values of s and p .  The most accurate 
form has an r.m.s. difference of density of 3.6 p.p.m. with the pure water correlation of 
Fine & Millero (1973) and 10.4 p.p.m. with the Chen & Millero (1976) saline-water 
data. Another even more convenient result for analysis has corresponding r.m.s. 
differences of 6.5 and 38.2 p.p.m., respectively. 

With this density formulation, Gebhart & Mollendorf (1978) have analysed boun- 
dary-region flows induced by thermal and saline diffusion, and with the two combined. 
They show that self-similarity results for a broad range of conditions, and give solu- 
tions for a number of thermally driven flows generated adjacent to a vertical surface, 
including ice melting and variable surface temperature. I n  the analysis the tempera- 
ture effect arises only in the appearance of a new parameter R, 
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The buoyancy force is taken, as in external flow, as g(p, - p ) .  Then, using the density 
relation of Gebhart & Mollendorf (1977)) p = p,[l -alt-t,lg], i t  was found, in the 
absence of saline diffusion, that 

pal -F  = p(tm, 8,) P )  - A t ,  s,, PI 
= Pm(S,, P )  a(saXp)]t, -trnlQ[I$ - RJY- pp1 
= p,alt,-t,lY w, 

where W = W ( 7 )  = 14- Rlq- IR(qis the buoyancy force for the momentum equation 
in similarity form. The density a t  the extremum, pm, as well as a,  q and t, are salinity 
and pressure dependent and follow from Gebhart & Mollendorf (1977). Note that 
q = 1 corresponds to the second part of the conventional Oberbeck-Boussinesq 
approximation. Otherwise, values of q range from about 1.6 to 1.9 for salinities to 
35%, and pressures to 1000 bar abs. The effects on density of motion pressure dif- 
ferences across the flow region are neglected; see the discussion in Gebhart & Mollen- 
dorf (1978) concerning pressure effects. 

The present investigation uses the above formulation with boundary conditions 
corresponding to  two plane flows arising from a horizontal line source of thermal 
energy and an axisymmetric flow resulting from a point thermal source. The two 
plane flows are the freely rising plane plume and the flow adjacent to an adiabatic 
surface with a horizontal line source imbedded in it. The other flow is the axisymmetric 
plume. We shall give the solutions for these flows in ambient water uniformly a t  its 
extremum density condition, that is a t  t, = tm(s,,p). This corresponds to R = 0, with 
flow and buoyancy upward, and is the only similarity condition for these plume flows 
in an unstratified ambient. Since these flows are thermally driven, no salinity gradients 
will arise, neglecting both the Sor6t and Dufour effects. An estimate of the order of 
magnitude of the ratio of the Sor6t term to a principal term in the mass diffusion 
equation, S,V. [s( 1 - s) Vt]/V% z S,s( 1 - s )  At/AsLe2, is calculated to be about 
where S,  is the Sor& coefficient and s, t and Le are salinity, temperature and the Lewis 
number, respectively. As explained by Caldwell (1974), the Dufour effect is negligible 
in liquids as a consequence of the Onsager relations. 

To summarize, previous investigations of transport in water around its density 
extremum has been mainly for pure water at atmospheric pressure. Most previous 
analytical studies have employed the buoyancy-force approximation of Merk (1  953) 
involving Chappius' density coefficients, or the other conventional one, a(At)2. Integral 
analysis has been used around the sphere and also adjacent to a vertical surface. A 
common simplification in previous analyses using the full equations has been to take 
t ,  = t,,, the extremum temperature. This means, of course, that no buoyancy inversion 
occurs in the flow region and that the flow is always upward. Several previous studies 
have used a cubic polynomial for density variations with temperature which resulted 
in additional parameters beyond those of simpler density formulations. There is no 
known previous study of plume flows in low-temperature water with density extrema 
effects included. 
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The present work is a similarity analysis of three constant-buoyancy plume flows 
in pure or saline water a t  its extremum temperature. Although the effect of saline 
diffusion is neglected, the influence of salinity level is retained. The following analysis 
considers the only conditions for which a similarity solution is known for constant- 
buoyancy plume flows in cold unstratified water. The calculated results cover a wide 
range of Prandtl number and salinity and pressure levels. 

2. Analysis 
The equations of steady laminar motion, with the first of the Oberbeck-Boussinesq 

approximations, and constant fluid absolute viscosity, j L ,  and fluid thermal con- 
ductivity, k ,  are: 

Q . w  = 0, (4) 

where p ,  is the local motion pressure (i.e. the difference between the local static 
pressure and the local hydrostatic pressure), w is the local fluid velocity vector and 

is the viscous dissipation term in the energy equation. The Sor& and Dufour effects 
are small for the flows considered here and have been neglected as explained above. 
Also, distributed thermal or salinity sources, as from reaction, are not included. It is 
assumed that the salinity, s, is usually a small component of the total density of 
saline water. For example, the salinity of estuary water could be about 20%,, that  is 
2.0% or 0.020 grams of solute t o  one gram of water. The viscous dissipation and 
pressure terms in (6) will be discarded later. 

Taking x positive in the direction opposed to gravity and applying the boundary- 
layer approximations, we have (7),  (8) and (9) below for plane flow and (lo), (1 1) and 
(12) for axisymmetric flow, where y is normal to the x direction and outward into the 
flow region: 

Saline diffusion is not considered here, but the effect of variable ambient salinity is 
included. The effect of motion pressure has been shown to be negligible by Gebhart & 
Mollendorf ( 1978), but the effect of variable ambient, pressure is included. The apparent 
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boundary conditions are, respectively, for ( a )  the plane plume, ( b )  the adiabatic 
surface and ( c )  the axisymmet<ric plume 

au a$ 
aY aY 

( c )  v = - = - = o  a t  y = O ,  u = $ = O  as y-too. 

A transformation in terms of a similarity variable q(x,  y) and the usual stream func- 
tions $ ( ~ , ! y )  and f ( 7 )  are defined following the notation of Gebhart (1971, 1973): 

?I = y b ( ~ ) ,  $(x,Y) = V C ( X )  f(t j) ,  to- t ,  = d(x) .  (14) 

Velocities are related in the usual way to the conventional stream function for the 
plane flows, and to the Stokes stream function for the axisymmetric plume. The fluid 
is unstratified, and the function d is the variation of temperature a t  y = 0. 

The scaling functions b and c depend on the local vigour and extent of the flow and 
are to be determined. For a purely thermally driven flow, the local flow vigour is 
conventionally indicated by a local Grashof number defined as Gr, = ( g x 3 / v 2 )  P(to - tm).  
This incorporates the second part of the Oberbeck-Boussinesq approximation. I n  
general, the Grashof number can be considered to be the ‘unit Grashof number’, 
gx3 /v2 ,  times some measure of buoyancy, for example P(t0 - tm).  A conventional way 
to include additional buoyancy, due to species diffusion for example, is to include 
additional buoyancy of similar form. See, for example, Gebhart & Pera (1971) and 
Mollendorf & Gebhart ( 1  974). 

Around a density extremum, however, a single linear term is not an accurate 
estimate of the buoyancy force. A much more representative estimate of the motion- 
causing density difference must be used in Gr, = (gx3/v2)  Ap/p. We have found that 
a consistent and effective way to define buoyancy is in its overall effect, which is the 
integral I ,  of W in equation ( 2 )  across the flow region. 

Introducing the transformations (14) into (7) ,  (8) and (9) and also into (lo),  ( 1 1 )  
and (12), we have equations (15) and (16) for plane flow and (17) and (18) for axi- 
symmetric flow: 

where the subscripts indicate differentiation with respect to x and the primes deriva- 
tives with respect to 7. The last terms in (15) and ( 1 7 )  are the buoyancy force. Both 
(16) and (18) contain a term for non-uniform temperature a t  y = 0. The energy effects 
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of hydrostatic pressure variation and of viscous dissipation are retained in (16) and 
( 1  8) but will later be neglected. 

Similarity requires that the coefficients and buoyancy force in the above equations 
not be x-dependent. This determines both b and c and the permissible form of d.  The 
specification of the exact form of the local Grashof number, as given below, also 
determines the buoyancy force term as W / I t c ,  

where for plane flows 

b(x) = $c(x)/z, r(x) = 4(4Gr,)t and d = (to - t,) = Nxn; ( 2 l a )  

and for axisynimetric flows 

(21 b )  
1 

b ( x )  = - (GrZ) i ,  c(z) = x and d = (to-t,) = Nx". 

However, in addition, the buoyancy force may not be x-dependent,. From equation ( 2 )  
we see, if R is not x-dependent, then W is not, assuming that q5 = &T) .  We see from 
equation ( 1 )  that we must have R = 0, in the absence of stratification, if (to - t,) is 
x-dependent, as it is in a developing constant-buoyancy flow. Therefore, we have 
similarity only for the ambient medium a t  the extremum temperature corresponding 
t o p  and s, i.e. t ,  = tllL(sCO,p). 

The downstream temperature decay of any constant-buoyancy flow is determined 
by the condition that the total convected energy must not vary, even though there is 
entrainment. The energy per unit transverse span for the two plane flows and the 
total energy for the axisymmetric plume are, respectively, 

X 

QA(x) = Som pc,(t - t ,) zc2ny dy = 277,ucp cd ( 2 2 b )  

Thus there are two values of n for which Q is independent of x: 

np = - 3 / ( p + 4 )  and nA = - 1 .  123) 

The appearance of Q ( s , , ~ )  includes the effect of variable ambient salinity and pressure 
on buoyancy, through the complexity of the density variation with temperature. We 
note that the corresponding values of n with the conventional Oberbeck-Boussinesq 
approximation are - 3 and - 1,  respectively. The values of n in (23) are used in (15) 
and (1 7 )  to determine the downstream temperature decay quantities, N ,  as 

and 
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where the following are two values I ,  and I ,  for the plane and axisymmetric plume, 
respectively : 

I p  = I A  =/Omf’$dl = I*, (25) 

with the appropriate f’  and $ for each plume. 
With all of these conditions, using equations (15) and (16) with the boundary 

conditions for the plane plume and line thermal source on an adiabatic surface, 
equations (13a) and (13b) become: 

12Pr 

q + 4  
$” +- (f$)’ = 0 ;  

or 

I $ - 1 = f ” = f = O  a t  q = O ,  
$ = f ‘ = O  a t  r+m, 

$ - 1 = f ’ = f = O  a t  r=O,  
$ = f ’ = O  a t  ~ + m .  

Equations (17), (18) and (13c) become for the axisymmetric plume: 

or 

f”’ f-1 f’  q - 1  f’ 2 $Q 

-+(T)(J’+(T)(y) 1 +G=O, 

f = f ‘ = $ - l = O  a t  y = O ,  f ’ = $ = O  as y+m. (31) 

Note that, for q = 1, equations (as), (27) and (29), (30) reduce to the ‘classical’ plume 
equations. The local mass and momentum convection rates m and &are, respectively, 
in the plane and axisymmetric plumes: 

hp = 4p(Grz/4)2f(~) ,  h,, = 2np~f(c0), (32% b) 
and 

42pv m 

&p = (Grz)2Iom (f’)2dy, 2, = 2npv(Grz)&/ 0 ( f ’ ) 2 d p / ~ .  (33a, b) 

The integrals in (33) are referred to as IM for each plume. The above boundary con- 
ditions are optimized for calculation in the sense of Gebhart, Pera & Schorr (1970) 
and Mollendorf & Gebhart (1974). This produces the simplest and most efficient 
numerical scheme. 
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71 

FIGURE 1. Calculated velocity and temperature fields for a freely rising plane plume for 
q = q(0, 1) = 1.894816. Dashed lines are conventional Oberbeck-Bouesinesq results, i.e. 
q = 1 for Pr = 12.6. Arrows indicate increasing Pr: 8.6 and 12.6. The Prandtl number effect 
on -v  is indistinguishable on this figure. Note that rounding q from seven to four significant 
digits will result in an error of less than 0.1% in the calculated results. See text for further 
discussion. 

3. Calculated results 

Equations and boundary conditions (26)-( 3 1) were numerically integrated on a 
CDC 6400 using a fourth-order double-precision predictor-corrector scheme and a 
standard shooting method incorporating a Newton-Raphson correction technique 
for guessed boundary conditions. Automatic local subdivision of the independent 
variable for prescribed accuracy levels was used. Integration was performed outward 
for a successively smaller accuracy criterion, from 7 = 0 to sufficiently large values of 
7 to  ensure the accuracy implied by the number of digits given here. Calculated 
numerical results are given in table 1 for Pr = 8.6, 9.6, 10.6, 11-6, 12.6 and 13.6 and 
for five values of q ranging from about q = 1-895 to q = 1 for each of the three flows. 
The condition q = 1 ,  for each Pr, corresponds to  results which amount to the con- 
ventional Oberbeck-Boussinesq approximation of a linear dependence of density on 
temperature. Other values of q correspond to various values of ambient salinity and 
pressure. 

We have retained for the calculations the full value of q for accuracy. Rounding q 
from 1.894 816 to 1-90 produces about a 0.2 yo error in the units of buoyancy for the 
plane plume. After discussing the results of the calculations we shall estimate the 
effect on overall transport parameters of rounding q. It will be shown later that, 
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FIGURE 2. Calculated velocity and temperature fields for a thermal line source on an adiabatic 
surface for q = q(0, 1) = 1.894816. Dashed lines are conventional Oberbock-Boussinesq results, 
i.e. q = 1 for Pr = 12.6. Arrows indicate increasing Pr: 8.6 and 12.6. Note that rounding Q 
from seven to four significant digits will result in an error of less than 0.1 yo in the calculated 
results. See text for further discussion. 

although precise values are used for calculations, q may be rounded to four digits 
with an attendant error of less than 0.1 yo in calculated transport quantities. 

The velocity and temperature fields for a freely rising plane plume are shown in 
figure 1 for q = p(0, 1) = 1.894816 and for values of Prandtl number 8.6 and 12.6. 
This range of Pr is applicable to most cold water situations. Oberbeck-Boussinesq 
results are shown as dashed lines for Pr = 12.6. The most pronounced effect of a 
density extremum is seen to be an increase of more than 20% in the upward axial 
velocity component near the plume centre-plane. There is a corresponding adjustment 
in the horizontal velocity component. Density-extrema effects on the temperature 
field are much less pronounced. 

Figure 2 shows the velocity and temperature profiles for a line source of heat on a 
vertical adiabatic surface. The flow behaviour is seen to be very different from that of 
the freely rising plume. This is a result of a high-shear region introduced by the 
presence of the surface. The most striking density-extrema effect is in the horizontal 
velocity component. In  general, because of fluid entrained into the primary upward 
flow there is a net increase in the local mass flow in the plume with downstream 
distance. For most buoyancy-induced flows, the entrainment or horizontal fluid 
velocity is inward (v < 0 )  over the entire flow region. However, i t  is known that a 
reversal in direction in the horizontal velocity component occurs for some flows. For 
example, such a trend was indicated by Mollendorf & Gebhart (1973) in a study of 
round laminar jets. A consequence of this is the appearance, in the flow region, of a 
location of vanishing v velocity. This is most clearly seen from the closed-form solution 
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FIGURE 3. Calculated velocity and temperature fields for a freely rising axisymmetric plume for 
(I = p(0, 1) = 1494816. Dashed lines are conventional Oberbeck-Boussinesq results, i.e. 
q = 1 for Pr = 12.6. Arrows indicate increasing Pr: 8.6 and 12.6. Note that rounding q froin 
seven to four significant digits will result in an error of less than 0.1 % in the calculated results. 
See text for further discussion. 

for a round laminar jet. Such a reversal in the v component of velocity is also found 
here in the flow above a line source on an adiabatic surface. Again, the dashed lines 
indicate conventional Oberbeck-Boussinesq results, for which a relatively weak 
reversal in the v component of velocity is seen. An asymptotic expansion for v about 
7 = 0 for q = 1, v - ( v / x )  ( f G r , ) ~ [ f ” ( O )  - ~ / ] ( 7 ~ / 1 0 )  +. . . , also indicates the presence 
of such a reversal. Density extrema effects are seen to accentuate this effect but 
otherwise to  cause relatively minor alterations to the velocity and temperature fields. 

Similarly, figure 3 shows the calculated velocity and temperature profiles for a 
freely rising axisymmetric plume. Except for the pronounced alteration of entrain- 
ment velocity, the trends are similar to those of a plane plume. Density extrema effects 
are seen to result in a striking reversal in the direction of the v component of velocity 
near the plume axis. This effect is much stronger for the axisymmetric plume than for 
the plane wall plume. 

The variation of the local buoyancy force, @/Iw, is shown in figure 4 for the three 
plumes considered here. The trends of density-extrema effects are seen to be the 
same for each flow shown. Near the axis of the plumes, there is an increase in buoyancy 
force beyond that of conventional Oberbeck-Boussinesq results. A decrease is seen 
near the edge of the flow region. 

Also of interest is the mass flow rate, maximum velocity and, for t,he plane wall 
plume, the surface shear. The variation of these quantities with Pr and q are tabulated 
in table 1 for the plane, wall and axisymmetric plumes. Note that for the axisymmetric 
plume the maximum velocity isf”(O), whereas for the freely rising plane plume it is 
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0 1 
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2 

FIGURE 4. Distribution of local buoyancy force, @/Iu, for (a)  plane plume, (6)  line source on an 
adiabatic surface and (c) axisymmetric plume. Dashed lines are conventional Oberbeck- 
Boussinesq results, i.e. g = 1 for Pr = 12.6. Arrows indicate increasing Pr: 8.6 and 12.6. Note 
that rounding p from seven to four digits will result in an error of less than 0.1 % in the calculated 
results. See text for further discussion. 

f'(0). The Prandtl-number range considered is from 8.6 to 13-6 for 1 6 q < 1.895. 
Again the condition q = 1 corresponds to conventional Oberbeclr-Boussinesq results 
with other values of q corresponding to other values of ambient salinity and pressure. 
Except for the wall plume, there is a relatively weak Pr effect on mass flow rate. There 
is, however, a significant q effect on the mass flow rate over the range of Pr considered. 
For each plume, density extrema effects are seen to increase the mass flow. There is a 
corresponding increase in the maximum of the upward velocity component for both 
the freely rising plane and axisymmetric plume. An increase in surface shear, with 
increasing q, is seen in table 1 for the wall plume. 

Table 1 shows the Pr and q variation of the integrated buoyancy force, convected 
heat and momentum flux, i.e. I,,, I ,  and I M ,  respectively. Table 1 also shows that I ,  
increases with Pr and q for each of the three plumes. Density-extrema effects are seen 
t,o decrease I t , .  significantly, as does increasing Pr. There is a corresponding increase 
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in I ,  for the plane freely rising and wall plumes. A decrease in I,, with increasing q 
and Pr, is seen in table 1, for the axisymmetric plume. The momentum flux integral, 
I,, is increased by density-extrema effects for both the freely rising plumes, but not 
for the wall plume. 

Throughout the foregoing calculations we have used the precise numerical values 
of q which relate to the easily identifiable conditions q(0, l), q(0, loo), q(O,600) and 
~(0,1000).  The summarized results in table 1 are then very accurate for these specific 
conditions, for any subsequent uses which may arise. Here we use these results to 
estimate the effects of rounding q up or down from these precise numerical values. The 
effect of q is seen to be about the same for each flow represented in table 1. Certainly 
I ,  is the most sensitive of the transport parameters. The results in table 1, for the 
plane plume, indicate that I ,  increases by about 1 part per two parts decrease in 
q(s ,p) .  As a result, a change in Iz,. of 0.1 yo accompanies a change in the value of q of 
about 0.0036. Thus, for example, q(0,600) = 1.727 147 may be rounded to 1.727 
without affecting accuracy to 0.1 yo in 

4. Conclusions 
Unlike conventional Oberbeck-Boussinesq results, the inclusion of density-extrema 

effects in ambient unstratified cold-water precludes the existence of similarity solu- 
tions for the freely rising plane, axisymmetric and wall plumes, unless the ambient 
temperature is at tm(s,,p,). For this condition, the flow is always vertically upward 
regardless of whether the flow originates from a source or sink of thermal energy. The 
calculated results for these flows presented here, cover a very wide range of ambient 
temperature, salinity and pressure conditions. Saline diffusion is not considered 
inasmuch as the Sor6t and Dufort effects are not significant for these flows. The effect 
of variable ambient salinity and pressure has, however, been included through the 
parameters q(s,, pm), tm(s,, pm) and a(sm, pm). I n  addition, the temperature level 
influences the Prandtl number, Pr = Pr(t,, s,,p,), as well as other fluid properties. 

Several important findings are presented here. Conventional Oberbeck-Boussinesq 
results incorporate a linear dependence of density on temperature and do not accu- 
rately represent density-extrema effects. The present analysis uses a new, simple and 
accurate equation of state for pure and saline water. Instead of 4, the buoyancy force 
becomes $9. In  addition, the coefficients in the governing equations depend on q. 
Density extrema effects also modify the x dependence of the flow and transport 
quantities. A comparison of presently determined and conventional x dependence of 
the various flow and transport quantities is shown in table 2 for each plume. Note that 
q may take on values between about 1.6 and 1-9 depending on the ambient salinity 
and pressure. Conventional Oberbeck-Boussinesq results correspond to  q = 1. Table 2 
shows that the x-dependence of u is altered the most by density-extrema effects. For 
plane plumes i t  goes from xo.200 to ~ 0 . 0 ~ 8  or depending on q. For axisymmetric 
plumes it goes from being independent of x to 2-0.447 or x-0.291, depending on q. The 
density extrema effects for the other quantities in table 2 are significant but not as 
pronounced as for u. Hence, the dependence of density on temperature has a striking 
influence on the downstream behaviour of transport, compared to  conventional 
Oberbeck-Boussinesq results, as well as to cause large changes in the magnitude of 
flow and transport quantities at a given downstream location. 
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Plane plumes Axisymmetric plume - 7pA----- 7 r---.-A 

OB Present OB Present 
1 

U 6 (2 -9) / (4  + 9 )  0 + ( l - q )  
2) - 2  - (z+ 1)/(9+4)  - 3  - t (n+ 1 )  

M + (5  - d / ( 4  + 9 )  1 3(3 - 9 )  
.I;.r 

to - t ,  - $  - 3/(p + 4) - 1  - 1  
3/(z + 4) 1 1 - 3 

TABLE 2. A comparison of conventional Oberbeck-Boussinesq (OB) and the presently deter- 
mined x dependence of the various flow and transport quantities for each plume. The entries 
in the table are exponents of the downstream distance, x. 

The authors acknowledge support for this study by the National Science Foundation 
under research grants GK18529, ENG75-05466 and ENG75-22623 (B. G.) and 
ENG76-16936 (J.C.M.). The many helpful suggestions of the referees are also grate- 
fully acknowledged. 

R E F E R E N C E S  

BENDELL, M. S. & GEBHART, B. 1976 Heat transfer and ice-melting in ambient water near its 
density extremum. Int .  J .  Heat Mass Transfer 19, 1081-1087. 

CALDWELL, D. R. 1974 Experimental studies on the onset of thermohaline convection. J .  Fluid 
Mech. 64, 347-367. 

CHEN, C. T. & MILLERO, F. J. 1976 The specific volume of sea water at high pressures. Deep- 
Sea Res. 23, 595-612. 

FINE, R. A. & MILLERO, F. J. 1973 Compressibility of water as a function of temperature and 
pressure. J .  Chern. Phys. 59, 5529-5536. 

GEBHART, B. 1971 Heat Transfer, 2nd edn. McGraw-Hill. 
GEBHART, B. 1973 Boundary layer flows and instability in natural convection. Adw. Heat 

Transfer 9 ,  273-348. 
GEBHART, B. & MOLLENDORF, J. C. 1977 A new density relation for pure and saline water. 

Deep-sea Res. 24, 831-848. 
GEBHART, B. & MOLLENDORF, J. C. 1978 Buoyancy-induced flows in water under conditions 

in which density extrema may arise. J .  Fluid Mech. 89, 673-707. 
GEBHART, B .  & PERA, L. 1971 The nature of vertical natural convection flows resulting from 

the combined buoyancy effects of thermal and mass diffusion. Int. J .  Heat Mass Transfer 

GEBHART, B., PERA, L. & SCHORR, A. W. 1970 Steady laminar natural convection plumes above 
a horizontal line heat source. Int .  J .  Heat Mass Transfer 13, 161-171. 

MERK, H. J. 1953 The influence of melting and anomalous expansion on the thermal convec- 
tion in laminar boundary layers. Appl. Sci. Res. 4, 435-452. 

MOLLENDORF, J. C. & GEBHABT, B. 1973 Thermal buoyancy in round laminar vertical jets. 
Int .  J .  Heat Mass Transfer 16, 735-745. 

MOLLENDORF, J. C. & GEBHART, B. 1974 Axisymmetric natural convection flows resulting 
from the combined buoyancy effects of thermal and mass diffusion. Proc. 5th Int .  Heat 
Transfer Conf., Tokyo. 

PERA, L. & GEBHART, B. 1972 Natural convection flows adjacent t o  horizontal surfaces 
resulting from the combined effects of thermal and mass diffusion. Int .  J .  Heat Mass 
Transfer 15, 269-278. 

14, 2025-2050. 


